Ciment

    Le terme " ciment " est issu du latin coementum  qui signifie mortier, liant des maçonneries. Ce sens étymologique a donc été à peu près conservé ; il s’est toutefois restreint aux seuls liants dits hydrauliques – parce qu’ils sont capables de durcir sous l’eau –, dont le durcissement est dû aux réactions chimiques d’hydratation des silicates et des aluminates de chaux.
Le ciment est généralement fabriqué en cuisant vers 1 450 0C des mélanges de calcaire et d’argile. On obtient alors des nodules durs, appelés clinkers ; c’est en broyant très finement ceux-ci, additionnés d’un peu de gypse, qu’on produit le ciment Portland. D’autres types peuvent être obtenus en mélangeant ce clinker broyé avec des constituants, broyés également, qui présentent des propriétés hydrauliques ou pouzzolaniques : ce sont soit des laitiers de hauts fourneaux granulés, soit des cendres volantes ou encore des pouzzolanes, naturelles ou artificielles.

Il existe, en outre, des ciments spéciaux, tels les alumineux ou les sursulfatés. La principale utilisation du ciment est le béton, dont il est le composant actif, mais il entre aussi dans la composition des mortiers pour maçonneries ou pour enduits.
Dans la préhistoire et au début de l’Antiquité, les maçonneries étaient soit liées à l’argile, soit réalisées sans liant, comme les murs pélasgiques de Grèce ou les murs Incas. À Babylone, les maçonneries de briques étaient liées au bitume. Les Égyptiens utilisèrent pour les pyramides, notamment, un plâtre grossier produit par cuisson d’un gypse (sulfate de calcium) impur. Les Grecs furent parmi les premiers constructeurs employant la chaux obtenue par cuisson du calcaire (carbonate de chaux). Les Romains se servirent beaucoup de la chaux dans leurs constructions, mais améliorèrent ce liant dès le Ier siècle avant J.-C., en l’additionnant de pouzzolane soit naturelle comme les cendres volcaniques actives, soit artificielles comme les briques pilées. Ils obtinrent ainsi un liant hydraulique, appelé ciment romain, qui est en fait intermédiaire entre une chaux et un véritable ciment. Celui-ci permit de construire de grands ouvrages hydrauliques, tel le pont du Gard, ou maritimes tels les ports.
Aucun progrès ne fut accompli sur les liants pendant le Moyen Âge, dont les principales constructions – cathédrales, châteaux... – doivent leur réussite surtout aux progrès réalisés dans l’art de tailler et d’assembler les pierres.
C’est seulement au XVIIIe siècle, les procédés de cuisson s’améliorant, que des chaux hydrauliques, intermédiaires entre les chaux et les ciments, furent produites. En 1756, l’Anglais Smeaton, en mélangeant celles-ci avec des pouzzolanes, obtint un mortier aussi dur que la pierre de Portland. Cette élaboration fut reprise par ses successeurs. Ainsi fut introduite progressivement dans le langage l’appellation de ciment Portland.
En 1817, le Français Louis Vicat, étudiant scientifiquement et non plus empiriquement, comme ses prédécesseurs, les chaux hydrauliques, découvrit les principes chimiques des ciments et définit leurs règles de fabrication. Aussi en est-il considéré comme l’inventeur.
En 1824, l’Anglais Aspdin prit un brevet pour la fabrication d’un ciment de Portland, mais celui-là comportait encore beaucoup de points obscurs. C’est seulement en 1845 que l’Anglais Johnson indiqua de façon précise les règles de fabrication de ce produit. À la fin du XIXe siècle, en France, Le Chatelier étudia la composition chimique des divers constituants des ciments ; son œuvre fut perfectionnée et achevée par l’Américain Bogue au XXe siècle.
En 1890, on comprit l’intérêt du laitier granulé ajouté au ciment, et, après 1945, celui des cendres volantes. Les ciments spéciaux sont d’invention plus récente : le ciment alumineux fut découvert par Bied, en 1908.
Le constituant principal des ciments industriels actuels est le clinker, mot anglais signifiant " scorie ".
Le clinker est obtenu en cuisant, vers 1 450 0C, des mélanges appropriés de calcaire et d’argile, appelés crus. L’argile, principalement composée de silicates d’alumine, se scinde sous l’effet de la chaleur en ses constituants, silice et alumine, qui se combinent ensuite à la chaux provenant du calcaire pour donner des silicates et des aluminates de chaux.
La fabrication du ciment comporte tout d’abord une extraction du calcaire et de l’argile dans de grandes carrières, bien équipées mécaniquement. Des problèmes délicats sont parfois posés par les carrières peu homogènes ; dans les cimenteries modernes, ils sont résolus par la pré homogénéisation. Cette opération s’effectue dans de vastes hangars où le cru est rationnellement analysé et mélangé. Ce dernier est ensuite broyé très finement, les réactions chimiques qui se développent dans la zone de " clinkérisation " ne pouvant avoir lieu que pour des grains de quelques micromètres de grosseur. Le cimentier peut alors choisir entre quatre voies : humide, semi-humide, semi-sèche et sèche, voie la plus employée aujourd’hui.
Dans la voie humide, le cru est broyé et malaxé avec suffisamment d’eau (de 30 à 40 p. 100) pour constituer une pâte liquide. Ce procédé est simple et sûr, mais consomme beaucoup de combustible pour évaporer l’eau excédentaire ; c’est pourquoi on lui préfère, la fabrication par voie sèche. Le malaxage s’effectue mécaniquement dans de très grandes cuves cylindriques en béton, où le cru peut être corrigé chimiquement par des additions appropriées de calcaire ou d’argile et où une homogénéisation finale est assurée.
La voie semi-humide commence comme la précédente, puis le cru est débarrassé d’une partie de son eau dans des filtres-presses.
Dans la voie sèche, le cru est séché s’il y a lieu, puis broyé très finement après avoir été homogénéisé et, éventuellement, corrigé chimiquement dans de grands silos équipés pour un malaxage pneumatique ; il est introduit sous forme pulvérulente dans le four (figure). Dans la voie semi-sèche, il ne l’est qu’après avoir été aggloméré, sous forme de boulettes, dans de grands granulateurs.
On utilisait autrefois des fours droits dérivés des fours à chaux ; il en subsiste quelques-uns qui emploient la voie semi-sèche. Les fours modernes sont généralement tournants, constitués par de grands cylindres métalliques, tapissés intérieurement de réfractaires, ayant quelques mètres de diamètre et atteignant plus de 100 mètres de longueur. Ils sont légèrement inclinés et tournent lentement, de façon à faire progresser le cru introduit dans la partie haute. Une flamme alimentée au charbon pulvérisé, au fuel ou au gaz est allumée à l’autre extrémité du four. C’est à celle-ci qu’est recueilli le clinker, sous forme de nodules incandescents.
De profondes modifications chimiques des constituants du cru se produisent au fur et à mesure que la matière progresse dans le four. Le ferro-aluminate tétracalcique apparaît le premier, avec une consistance pâteuse ou liquide ; lorsque le fer est épuisé par cette réaction, il se forme de l’aluminate tricalcique fondu. Ces deux corps fondus constituent le liquide des fours à ciment. Celui-ci dissout la silice et la chaux qui se combinent alors et cristallisent sous forme de silicates de chaux ; ce phénomène progressif constitue la " clinkérisation ". Si la silice et la chaux existaient seules dans le cru, il faudrait chauffer bien davantage, au-dessus de la température de fusion de la silice (1 900 0C), pour obtenir la formation de silicates de chaux.
Des échangeurs de chaleur tant à l’amont qu’à l’aval du four permettent d’améliorer le bilan thermique de l’opération. Récemment, le processus de cuisson a été perfectionné par un apport de combustible, en amont du four rotatif. Ce procédé, dit de précalcination, permet de préchauffer la matière jusqu’à 800 0C et d’assurer une décarbonatation poussée, d’environ 85 p. 100. On peut ainsi réduire la taille des usines ou augmenter la production. Parallèlement, se poursuivent l’effort de réduction de la consommation de combustible et la conversion aux combustibles non pétroliers, tels le charbon ou les déchets de nature diverse. De puissants dépoussiéreurs électrostatiques, mis au point depuis quelques années, sont généralement installés à la base des cheminées d’évacuation des gaz, tandis que d’autres sont édifiés aux points critiques de l’usine ; l’industrie cimentière est maintenant devenue une industrie non polluante.
Le clinker immergé n’est que très lentement attaqué par l’eau : la profondeur d’attaque est de l’ordre de 5 à 10 micromètres la première année et la vitesse de propagation de cette attaque diminue rapidement. Cela permet de stocker le clinker longtemps, même à l’air libre. Il faut que ce clinker soit broyé très finement pour obtenir un ciment actif.
Ce broyage s’effectue dans des broyeurs à boulets, grands cylindres métalliques horizontaux, animés d’un mouvement de rotation autour de leur axe, et à moitié remplis de boulets d’acier.
Le clinker est introduit à l’une des extrémités avec un peu de gypse (de 3 à 5 p. 100), et l’on recueille le ciment, moulu par le choc des boulets, à l’autre extrémité. On distingue les broyeurs à circuit ouvert, dans lesquels le clinker n’effectue qu’un passage, et ceux à circuit fermé, dans lesquels le produit moulu est envoyé à la sortie dans un cyclone qui en sépare les éléments fins. Ceux-ci, qui constituent le ciment, sont envoyés au silo de stockage ; les autres éléments sont renvoyés à l’entrée du broyeur et recyclés.
La finesse de broyage du ciment est mesurée par sa surface spécifique, c’est-à-dire la somme des surfaces des grains contenus dans l’unité de masse. Elle est voisine de 3 200 cm2/g pour les ciments courants français ; elle atteint 3 700 cm2/g pour leurs équivalents américains.
La résistance des ciments hydratés, généralement exprimée par la résistance à la compression simple, est fortement influencée, surtout dans les premiers jours, par leur finesse. Mais les grandes finesses présentent des inconvénients : le retrait après la prise est augmenté et le dégagement de chaleur est accentué dans les premiers jours.
L’addition de gypse au clinker a pour but de régulariser la prise du ciment, notamment de ceux qui contiennent des proportions importantes d’aluminate tricalcique. Grâce à ce gypse, la prise du ciment, c’est-à-dire le début de son durcissement, s’effectue au plut tôt une demi-heure après le début de l’hydratation. Sans gypse, la prise serait irrégulière et pourrait intervenir trop rapidement.
Le mécanisme de durcissement du ciment est très différent de celui de la chaux. Le ciment durcit par hydratation des silicates et des aluminates de chaux, alors que la chaux durcit lentement à l’air en se carbonatant.
La chaux est obtenue par cuisson du calcaire, CO3Ca, qui, vers 400 0C, perd son gaz carbonique et se transforme en chaux vive, CaO. Celle-ci doit d’abord être éteinte avec de l’eau, ce qui la transforme en chaux hydratée, Ca(OH)2. Cette dernière réabsorbe alors lentement le gaz carbonique de l’air et reconstitue progressivement un calcaire tendre.
Le ciment Portland contient quatre constituants principaux : le silicate tricalcique 3 CaO. SiO2 ou, par abréviation, C3S ; le silicate bicalcique 2 CaO. SiO2 ou C2S ; l’aluminate tricalcique 3 CaO. Al2O3 ou C3A ; le ferro-aluminate tétracalcique 4 CaO. Al2O3. Fe2O3 ou C4AF.
L’élément noble du ciment est le silicate tricalcique, qui lui donne ses fortes résistances. La proportion de silicate tricalcique dans le ciment Portland, qui était de 50 p. 100 avant guerre, s’est progressivement accrue jusqu’à 60 p. 100, et atteint même actuellement 70 p. 100 dans certains ciments très résistants.
Par hydratation, les silicates tri- et bicalciques donnent du silicate monocalcique hydraté et dégagent de la chaux libre hydratée. Ce sont les cristaux de silicate monocalcique hydraté qui, en se fixant entre eux et aux granulats, confèrent au ciment sa résistance.
L’aluminate tricalcique donne, par hydratation, de l’aluminate monocalcique hydraté et dégage de la chaux libre hydratée. C’est aussi un élément actif de la résistance des ciments ; il contribue notamment beaucoup, par la rapidité relative de sa réaction, aux résistances dans les premiers temps. C’est également la première cristallisation du trisulfo-aluminate (ou ettringite) produite par l’hydratation de C3A en présence de gypse, ainsi que des réactions physico-chimiques complexes qui sont à l’origine du raidissement de la pâte de ciment : ce qu’on appelle la prise du ciment (entre 1 h 30 et 6 h après le malaxage). L’hydratation de C3A a, en revanche, l’inconvénient de dégager beaucoup de chaleur, et celui de favoriser sa combinaison avec les sulfates pour donner du sulfo-aluminate tricalcique ou sel de Candlot, dont la formation très expansive provoque la dégradation des bétons durcis. C’est là l’explication de l’attaque des bétons par l’eau de mer ou par les eaux séléniteuses, c’est-à-dire contenant du sulfate de calcium. Aussi, les ciments résistant à l’eau de mer sont-ils des ciments à faible teneur en aluminate de chaux.
Quant au ferro-aluminate tétracalcique, il s’hydrate, mais ne joue aucun rôle dans le durcissement du ciment. Le développement de ces réactions chimiques, qui vont se poursuivre durant plusieurs mois, assure le durcissement de la pâte de ciment et lui confère sa résistance mécanique.